why does log a + log b = log (ab)

Let log a be some number A and log b be some number B

now the natural log of something is the equivalent of saying a=e^A and b = e^B

So a*b = e^A * e^B which by rules of indices

 = e^(A+B)

Therefore log(ab) = log(e^(A+B))

= A + B = log a + log b 

RV
Answered by Rebecca V. Maths tutor

5483 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx if y=(x^3)(e^2x)


Express (16x^2 + 4x^3)/(x^3 + 2x^2 - 8x) + 12x/(x-2) as one fraction in its simplest form.


Find the derivative, dy/dx, of y = 8xcos(3x).


Find the value of the discriminant of x2 + 6x + 11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning