why does log a + log b = log (ab)

Let log a be some number A and log b be some number B

now the natural log of something is the equivalent of saying a=e^A and b = e^B

So a*b = e^A * e^B which by rules of indices

 = e^(A+B)

Therefore log(ab) = log(e^(A+B))

= A + B = log a + log b 

Answered by Rebecca V. Maths tutor

3940 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I recognise when to use a particular method for finding an integral?


By using partial fractions, integrate the function: f(x) = (4-2x)/(2x+1)(x+1)(x+3)


∫ x^3 *ln(2x) (from 2->1) can be written in the form pln 2 + q, where p and q are rational numbers. Find p and q.


Differentiate (2^x)(5x^2+5x)^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences