How do I find the maximum/minimum of a function?

The maximum/minimum of a function are the points where the first derivative (the gradient) of the function is zero.

So with a function of the form y=f(x), you must take the derivative (dy/dx) and set your result equal to zero. This equation must then be solved for x, to find the x value(s) for which the function is a maximum or minimum.

To determine which values are maxima and which are minima, you must take the second derivative of the function (this means differentiating the original function twice) and substitute each of the x-values found above into this equation in turn. The values which give a positive output for the second derivative are minimum points and the values which give a negative output for the seond derivative are maximum points.

Answered by Ellie L. Maths tutor

31169 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the 12th term and the sum of the first 9 terms on the following Arithmetic Progression: a = 2 and d = 3


1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


Let y(x) be a function with derivative y'(x)=x^2-2 and y(0) =7. What is the value of y at x = 3?


How can we calculate the derivative of function f(x)= (x+2)/(x-1)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences