How do you prove Kepler's Third Law?

For starters, what exactly is Kepler's Third Law?

Kepler's Third Law states that the square of the time period of orbit is directly proportional to the cuber of the semi-major axis of that respective orbit. (the semi-major axis for a circular orbit is of course the radius) Mathematically this can be represented as: T2 / r3 = k where k is a constant. The value k is related to physical constants such that k = 4pi2/GM where G is the gravitational constant and M the mass of the object at the centre of the orbit (NOT the object doing the orbiting!)

 

How did Kepler arrive at this result? Unfortunately, through experiment, which is not particularly convenient for us, but, thankfully we have knowledge Kepler had not! 

 

The result can be obtained surprisingly easily, assuming we have the necessary tools. 

We will need the following four equations:

Circular Motion: a = v2/r; v = wr = 2pi/T

Gravitational attraction: F = GMm/r2 

Newton's Second Law: F = ma

 

Substituting circular motion and gravitational attraction into the above formula yields:

mv2/r = Gmm/r2 

Cancelling the m's multiplying by r and by GM gives:

v2/GM = 1/r

This is very close to the result we want, one more substitution should give us the desired equation. Notice that v = wr = 2rpi/T from circular motion equations.

And so we have:

4pi2/GMT= 1/r3

Multiplying by T2:

T2/r= 4pi2/GM as required!

Answered by Daniel B. Physics tutor

69907 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why is the refractive index of water bigger than that of air?


A light wave with wavelength 590nm shines upon a metal and causes it to emit an electron with a speed of 5x10^5 m/s. What is the work function of the metal?


A 1.6m long string fixed at both ends vibrates at its fundamental frequency... (i)what is this frequency?


If you have 1.33g of oxygen (Mr = 32) in a container of volume 1000cm^3 at atmospheric pressure (101.3*10^3 Pa), what is the temperature of the gas in Celsius? R=8.314


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences