Can you differentiate the following function using two methods:- y = e^(2x+1)

The first method to differentiate this fuction is the basic chain rule method. differentiate 2x+1 and add this to the front of the function. This gives us 2e^(2x+1). the other method to differentiate this function is by using logs. if you log both sides base of e (ln), you get ln(y) = 2x+1 and then differentiating both sides with respect to x gives (1/y)*dy/dx= 2. This when rearranged gives dy/dx = 2y and we know that y = e^(2x+1). We end up with the same solution as before.

Answered by Rajenth N. Maths tutor

3711 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (􏰀36x^−2)􏰁^ 0.5


How do I prove (x-2) is a factor of the function f(x) = x^2-4x+4?


Find dy/dx when y = 5x^6 + 4x*sin(x^2)


Find the first and second derivative of f(x) = 6/x^2 + 2x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences