Can you differentiate the following function using two methods:- y = e^(2x+1)

The first method to differentiate this fuction is the basic chain rule method. differentiate 2x+1 and add this to the front of the function. This gives us 2e^(2x+1). the other method to differentiate this function is by using logs. if you log both sides base of e (ln), you get ln(y) = 2x+1 and then differentiating both sides with respect to x gives (1/y)*dy/dx= 2. This when rearranged gives dy/dx = 2y and we know that y = e^(2x+1). We end up with the same solution as before.

RN
Answered by Rajenth N. Maths tutor

5118 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many ways are there to arrange n distinct objects in a CIRCLE?


Find D when 8x^3-12x^2-2x+D is divided by 2x+1 when the remainder is -2


(a) Express 9x+11/(2x+3)(x-1) as partial fractions and (b) find the integral of 9x+11/(2x+3)(x-1) with respect to x


Simplify √32+√18 to a*√2 where a is an integer


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning