Can you differentiate the following function using two methods:- y = e^(2x+1)

The first method to differentiate this fuction is the basic chain rule method. differentiate 2x+1 and add this to the front of the function. This gives us 2e^(2x+1). the other method to differentiate this function is by using logs. if you log both sides base of e (ln), you get ln(y) = 2x+1 and then differentiating both sides with respect to x gives (1/y)*dy/dx= 2. This when rearranged gives dy/dx = 2y and we know that y = e^(2x+1). We end up with the same solution as before.

RN
Answered by Rajenth N. Maths tutor

4999 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: y = sin(2x).


Differentiate x^3(sinx) with respect to x


The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0


Find the x co-ordinate of stationary point of the graph y=5x^3 +3x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning