What are surds and how does multiplying them work?

A surd is an irrational number which cannot be expressed as a fraction or a recurring number. E.g. root 2 = 1.4142135…. and it continues (but it does NOT repeat like a recurring fraction though). E.g. pi would actually be a surd too, because it cannot be accurately presented as a simple number like a fraction or recurring decimal. 1.4.... or 32/9 are not surds for that matter.

If you were to round 1.4142135… to 1.414, and then square it when trying to get back to 2, you will in fact get 1.999396. This is because rounding is a type of approximation, so you will not get the exact figure for 2 but for a number close to it. This would be the same with all surds. Root 2 would be the only fully accurate representation of the number.

Hence (root 2)2 would be 2. To help understand this, imagine it was root 16.
Root 16= 4.
42 = 16.
Hence, (root 16)2 = 16.
In the same way, any rooted surd multiplied by itself = the number inside the surd.

And in terms of multiplying different surds…

Root 9 x Root 4 = Root 36

We can prove this is because

Root (9x4) = Root 36   = 6 and root 9 x root 4 = 3 x 2 = 6. Therefore, this is correct!

Hence, with any surd, the inside number of the surds can be multiplied to make a new surd. (e.g. root 3 x root 5 = root 15 ) :)

Answered by Febi S. Maths tutor

6216 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

(a)Show that the lines y=3x+7 and 2y–6x=8 are parallel. [3 marks] (b) Is the point (–5, –6) above, below or on the line y = 3x + 7 ? Do not use a graphical method. [2 marks] [Total 5 marks]


Write 180g as a fraction of 3Kg. Give your answer in its simplest form.


The area of the cross section of a prism is 30 cm2 . The length of the prism is 25 cm. Work out the volume of the prism.


If Angela gets 50p change from a £2 coin, how much is 250g of butter? (full details below)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences