Express 3 cos θ + 4 sin θ in the form R cos(θ – α), where R and α are constants, R > 0 and 0 < α < 90°.

To find the value of R, use Pythagoras's Theorem using the coeffecients of cos θ and sin θ. The correct answer should be R=5. Expand the expression  R cos(θ – α). Equate the expanded expression with 3 cos θ + 4 sin θ to find the value of θ. The correct answer is α = 53...° approximately.

Answered by Anahita G. Maths tutor

20186 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined for x > 0. The gradient of the curve at the point (x,y) is given by dy/dx = x^(3/2)-2x. Show that this curve has a minimum point and find it.


Integrate cos^2A


A curve has equation y^3+2xy+x^2-5=0. Find dy/dx.


f(x) = x^3 + 3x^2 + 5. Find f''(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences