What is differentiation and why is it useful?

Although differentiation is often taught in an abstract way, it's applications are virtually limitless. It's primary purpose is to determine the gradient of a line at a given point on a curve. Unlike with the gradient of a straight line, which is constant at all points on the line, the gradient of a curve is different at every point. Differentiation is therefore the method used to find the gradient at a given point. 

EH
Answered by Evelyn H. Maths tutor

4619 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)


Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


What is the 'chain rule'?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning