How do I integrate by parts?

The integration by parts formula takes the form:

 

int(uv') = uv - int(vu') 

 

where v' = dv/dx and u' = du/dx

A lot of the art of using the integration by parts is working out which part to differentiate and which part to integrate. I find that the most important thing to look at first is 'reducing the power', and making the second integral simpler. So I would recommend looking at differentiating anything of the form x^n, and avoiding differentiating sines, cosines, or exponentials. Other than that tip, integrating by parts is a process that just needs to be repeated until your answer pops out! 

 

Answered by Chris B. Maths tutor

4531 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the pair of simultaneous equations; (1) y + 4x + 1 = 0, (2) y^2 + 5x^2 + 2x = 0 .


The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0


Find the indefinite integral of 3x - x^(3/2) dx


Complete the square of 2x^2+16x-24 and hence state the minimum value of the function


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences