How do I integrate by parts?

The integration by parts formula takes the form:

 

int(uv') = uv - int(vu') 

 

where v' = dv/dx and u' = du/dx

A lot of the art of using the integration by parts is working out which part to differentiate and which part to integrate. I find that the most important thing to look at first is 'reducing the power', and making the second integral simpler. So I would recommend looking at differentiating anything of the form x^n, and avoiding differentiating sines, cosines, or exponentials. Other than that tip, integrating by parts is a process that just needs to be repeated until your answer pops out! 

 

Answered by Chris B. Maths tutor

4691 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate a polynomial?


Prove the Quotient Rule using the Product Rule and Chain Rule


Solve the inequality |x - 2sqrt(2)| > |x - 4sqrt(2)|.


Find the angle between two lines with vector equations r1 = (2i+j+k)+t(3i-5j-k) and r2 = (7i+4j+k)+s(2i+j-9k)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences