How do I integrate by parts?

The integration by parts formula takes the form:

 

int(uv') = uv - int(vu') 

 

where v' = dv/dx and u' = du/dx

A lot of the art of using the integration by parts is working out which part to differentiate and which part to integrate. I find that the most important thing to look at first is 'reducing the power', and making the second integral simpler. So I would recommend looking at differentiating anything of the form x^n, and avoiding differentiating sines, cosines, or exponentials. Other than that tip, integrating by parts is a process that just needs to be repeated until your answer pops out! 

 

CB
Answered by Chris B. Maths tutor

5015 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can we solve a two-equation, two-unknown values?


Calculate the binomial expansion of (2x+6)^5 up to x^3 where x is decreasing.


(a) Use integration by parts to find ∫ x sin(3x) dx


How do I differentiate (x^2 + 3x + 3)/(x+3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning