How do I solve equations with modulus functions on both sides?

Whilst it is possible to do it algebraically, it's usually easier to solve it graphically. For example: for which values of x is |x+2| = |3x-6|. By sketching the graphs of y=|x+2| and y=|3x-6|, it is easy to see that there are 2 intersections: one for positive values of x+2 and negative values of 3x-6, the other for positive values of x+2 and positive values of 3x-6. To find the first x value solve x+2 = -3x+6, to find the second x value solve x+2 = 3x-6.

If you prefer to work algebraically, simply ask "for which values of x is x+2 negative, and for which is it positive". Do the same for 3x-6. Now solve for x in each section (with the 3 sections being: both negative, one positive one negative, both positive). Check each value you've found to see if it makes sense. Demonstrated below.

For both negative:
-x-2 = -3x+6, x<-2
x = 4, x<-2. This is a clear contradiction, so we ignore this value.

For x+2 positive and 3x-6 negative:
x+2 = -3x+6, -2<x<2
x = 1, -2<x<2. This is a valid statement, so this value of x satisfies the original equation.

For both positive:
x+2 = 3x-6, 2<x
x = 4, 2<x. This is also a valid statement, so this value also satisfies the original equation.

Therefore the answer to |x+2| = |3x-6| is x = 1, x = 4

Answered by Seb G. Maths tutor

19444 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the chain rule?


Find the area bounded be the curve with the equation y = x^2, the line x = 1, the line x = -1, and the x-axis.


Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences