Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.

To solve this problem, we must first differentiate:

Identify that we are able to use the product rule as our expression is of the form y = f(x)g(x) where f(x) = e^(2- x) and g(x) = ln(3x- 2). 

Hence f'(x) = -e^(2- x) and g'(x) = 3/(3x- 2)

By the product rule, dy/dx = f(x)g'(x) + f'(x)g(x) = 3e^(2- x)/(3x- 2) - e^(2- x)ln(3x- 2).

When we substitute x = 2 into this equation, we get that dy/dx = 3/4 - ln(4), which is our final answer.

JC
Answered by Joe C. Maths tutor

10145 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I remember the coefficients of a Taylor expansion?


A curve has an equation: (2x^2)*y +2x + 4y – cos(pi*y) = 17. Find dy/dx


Two particles A and B of mass 2kg and 3kg respectively are moving head on. A is moving at 5m/s and B is moving at 4m/s. After the collision, A rebounds at 4m/s. What is the speed of B and what direction is it moving in?


Find the antiderivative of the function f(x)=cos(2x)+5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning