Solve the inequality x < 4 - |2x + 1|.

In order to deal with the modulus sign, we must take account of 2 possible cases:

Case 1: |2x + 1| = (2x +1). In this case we can solve algebraicly, preserving the inequality sign, to get that x < 4 -(2x + 1) = 3 - 2x. Then by adding 2x to each side and dividing both sides by 3 we get x < 1.

Case 2: |2x + 1| = -(2x +1). In this case we solve algebraicly again so that x < 4 + (2x +1) = 2x + 5. Hence by subtracting a 5 and an x from each side we get x > -5.

Finally we combine the results of each case, namely that x < 1 and x > -5 to get -5 < x < 1 as our final solution.

JC
Answered by Joe C. Maths tutor

7941 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A level Maths question - The graph of y=2sin(2x)+1 is rotated 360 degrees about the x-axis to form a solid. Find the volume enclosed by the curve, the co-ordinate axes and the line x=pi/2


Solve the equation cosec^2(x) = 1 + 2cot(x), for -180° < x ≤ 180°.


How do I find the equation of a tangent to a given point on a curve?


How do you solve trigonometric equations?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning