Use the chain rule to differentiate y=(x-3)^(-3)

Hint: the chain rule states that for y=u(x) ^a, the derivative will be dy/dx = dy/du * du/dxSo we just need to find dy/du and du/dx!In this case u(x)=x-3, so du/dx = 1.from y=u^(-3), dy/du = -3u^(-4).This means we know dy/dx = -3u^(-4) * 1Converting from u to x, we get dy/dx = -3 (x-3)^(-4) .... done! 

RT
Answered by Rosemary T. Maths tutor

5338 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following equation to find y: dy/dx = 3x^2 + 2x + 6


Find two values of k, such that the line y = kx + 2 is tangent to the curve y = x^2 + 4x + 3


Split (3x-4)/(x+2)(x-3) into partial fractions


Integrate the function y = 2x^2 + 3x + 8 with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning