Use the chain rule to differentiate y=(x-3)^(-3)

Hint: the chain rule states that for y=u(x) ^a, the derivative will be dy/dx = dy/du * du/dxSo we just need to find dy/du and du/dx!In this case u(x)=x-3, so du/dx = 1.from y=u^(-3), dy/du = -3u^(-4).This means we know dy/dx = -3u^(-4) * 1Converting from u to x, we get dy/dx = -3 (x-3)^(-4) .... done! 

RT
Answered by Rosemary T. Maths tutor

4844 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When trying to solve inequalities (e.g. 1/(x+2)>x/(x-3)) I keep getting the wrong solutions even though my algebra is correct.


Find the acute angle between the two lines... l1: r = (4, 28, 4) + λ(-1, -5, 1), l2: r = (5, 3, 1) + μ(3, 0, -4)


Solve the simultaneous equations: y-2x-4 = 0 (1) , 4x^2 +y^2 + 20x = 0 (2)


Find two values of k, such that the line y = kx + 2 is tangent to the curve y = x^2 + 4x + 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences