Find the tangent to the curve y = x^2 + 3x + 2 at x = 1

First, we differentiate y = x^2 + 3x + 2 to find the slope of the curve at any given x point:

dy/dx = 2x + 3

So at x = 1, dy/dx = 2 + 3 = 5

We know that straight lines come in the form y = mx + c, and in this case m is equal to our gradient which we worked out earlier - 5.

So y = 5x + c, and we want to solve for c. Luckily we know a way to find an x and y co-ordinate that lie on the curve - the original function!

At x = 1, y = 1^2+3*1+2, so y = 6, and the point (1,6) lies on the curve.

Using this, we can solve y = 5x + c by substitution:

6 = 5*1 + c

1 = c

Hence the equation of the tangent is y = 5x + 1.

SB
Answered by Samuel B. Maths tutor

8748 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve x^2 + 8x +3 = 0 by completing the square.


find dy/dx for the equation y = 6x ^(1/2)+x+3


Find the integral of ln(x)


A particle is in equilibrium under the action of four horizontal forces of magnitudes 5 newtons acting vertically upwards ,8 newtons acting 30 degrees from the horizontal towards the left,P newtons acting vertically downwards and Q newtons acting to right


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences