G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244

First combine the two functions so that we have an equation for a to solve:

G(h(a)) = (3^x)^3 + 1 = 3^(3x) + 1 = 244

which gives

3^(3x) = 243

Now we can use logarithms in order to solve the equation

log(3^(3x)) = log(243)

but log(3^(3x))=3x*log(3)

so we have x = (log(243))/(3*log(3))

and if we enter this into a calculator we find that x=5/3

Answered by Josephine S. Maths tutor

3993 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the maximum/minimum of a curve?


Show that: [sin(2a)] / [1+cos(2a)] = tan(a)


How do you integrate the function cos^2(x)


Simplify: 3l^2mn+nl^2m−5mn^2l+l^2nm+2n^2ml−mn^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences