What is chirality? Why is it seen in amino acids?

All amino acids except glycine are chiral molecules. This is also known as optical isomerism.

This means that they form isomers that are non-superimposable mirror images of each other. When drawing these draw a dotted line (the plane) but imagine it is a mirror. Draw the alpha-carbon in the middle and the 4 bonded groups. Then on the other side draw what you would expect the reflection to look like. You can always use an actual mirror the first time or to check your image. The number of isomers depends on the number of chiral carbons (aka chiral centres).

In amino acids, the chiral carbon is the alpha-carbon that is bonded to a hydrogen, amino group, carboxyl group and R-group. As it is bonded to 4 different atoms or groups of atoms it shows chirality and has two optical isomers.

Glycine is the exception because its R-group is a hydrogen so it is not bonded to 4 different groups of atoms and will not produce isomers that are non-superimposable mirror images so does not demonstrate chirality.

ZC
Answered by Zoe C. Chemistry tutor

21557 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Explain, in terms of atomic energy levels, how an atomic emission spectrum is formed


A 25 cm3 sample of an unknown concentration of sulfuric acid was titrated against 0.1 mol dm-3 sodium hydroxide. The average titre was 20 cm3. Calculate the concentration of the sulfuric acid.


If we burn 3 moles of carbon in air (as per the equation), what mass (in grams) of carbon dioxide will be produced? What volume will this gas occupy at standard temperature and pressure?


Calculate the pH of a 0.025 mol dm-​3​ solution of methanoic acid. For HCOOH, Ka = 1.58 x 10-​4​ mol dm-​3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning