How do you use derivatives to categorise stationary points?

When investigating graphs, you will often be asked to pick out features of the graph; stationary points being the most popular. You will need to know that a stationary point on f(x) can be found by solving the following equation: f'(x)=0.Once you have found the stationary points, you will need to find the second derivative of the graph, also known as f''(x). By finding the values of f''(x) at the x-coordinates where stationary points exist, you can categorise the stationary points.If f''(x) > 0, then the stationary point is a minimum point.If f''(x) < 0, then the stationary point is a maximum point.If f''(x) = 0, then the stationary point is a point of inflection.

AW
Answered by Alex W. Further Mathematics tutor

3842 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A


If y=(x^2)*(x-10), work out dy/dx


If y=x^3+9x, find gradient of the tangent at (2,1).


A curve has equation y = ax^2 + 3x, when x= -1, the gradient of the curve is -5. Work out the value of a.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning