How do you use derivatives to categorise stationary points?

When investigating graphs, you will often be asked to pick out features of the graph; stationary points being the most popular. You will need to know that a stationary point on f(x) can be found by solving the following equation: f'(x)=0.Once you have found the stationary points, you will need to find the second derivative of the graph, also known as f''(x). By finding the values of f''(x) at the x-coordinates where stationary points exist, you can categorise the stationary points.If f''(x) > 0, then the stationary point is a minimum point.If f''(x) < 0, then the stationary point is a maximum point.If f''(x) = 0, then the stationary point is a point of inflection.

AW
Answered by Alex W. Further Mathematics tutor

3279 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How to solve the inequality 1 - 2(x - 3) > 4x


f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).


y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5


Find the General Second Order Differential Equation Using Substitution (A2 Further Maths)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences