How do you use derivatives to categorise stationary points?

When investigating graphs, you will often be asked to pick out features of the graph; stationary points being the most popular. You will need to know that a stationary point on f(x) can be found by solving the following equation: f'(x)=0.Once you have found the stationary points, you will need to find the second derivative of the graph, also known as f''(x). By finding the values of f''(x) at the x-coordinates where stationary points exist, you can categorise the stationary points.If f''(x) > 0, then the stationary point is a minimum point.If f''(x) < 0, then the stationary point is a maximum point.If f''(x) = 0, then the stationary point is a point of inflection.

Related Further Mathematics GCSE answers

All answers ▸

What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2


Given y=x^3-x^2+6x-1, use diffferentiation to find the gradient of the normal at (1,5).


Find the stationary point of 3x^2+7x


How do I find the limit as x-->infinity of (4x^2+5)/(x^2-6)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences