What are the set of values for x that satisfy the below equation?

x2 - 9x ≤ 36

1. Draw a graph.

y = x2 - 9x and y = 36

2. Find the points of intersection by solving x2 - 9x = 36

x2 - 9x = 36

x2 - 9x - 36 = 0

(x - 12)(x + 4) = 0

Therefore, the lines intersect at x = 12 and x = - 4

3. Either observe from your graph or plug in points either side of the points of intersection.

i) For x < -4

e.g. x = - 5. Sub. into LHS = (-5)2 - 9(-5) = 70 > 36

ii) For -4 < x < 12

e.g. x = 0. Sub. into LHS = 02 - 9(0) = 0 < 36

iii) For x > 12

e.g. x = 20. Sub. into LHS = 202 - 9(20) = 400 - 180 = 220 > 36

Therefore, x2 - 9x ≤ 36 when -4 ≤ x ≤ 12

Answered by Daisy D. Maths tutor

9974 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the coefficient of x^2 in the expansion of (5+2x)^0.5?


Let X be a normally distributed random variable with mean 20 and standard deviation 6. Find: a) P(X < 27); and b) the value of x such that P(X < x) = 0.3015.


Find the derivative of the function f:(0,oo)->R, f(x)=x^x.


A particle A of mass 0.1kg is moving at a speed of 1.5m/s to the right. It collides with a particle B of mass 0.3kg moving at a speed of 1.1m/s to the right. Calculate change in momentum of particle A if particle B has a speed of 1.4m/s after collision.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences