How do I find the limit as x-->infinity of (4x^2+5)/(x^2-6)?

Here you will deal with all problems of the same type in a very similar way.
Intuition first tells us that we can’t really find the limit, as both the top (4x2+5), and the bottom (x2-6) parts of the fraction tend to infinity as x does likewise. However, as is sometimes the case, this is the wrong approach as playing with infinities is a dangerous game!
Note that we’re comfortable at guessing the limit of, say 1/x2 as x tends to infinity (if you’re not, then notice that as x gets very big, 1/x gets very small – the bigger x is, the smaller 1/x is, and since x > 0, 1/x must always be larger than 0 as it can’t be negative, so 1/x gets closer and closer to 0 as x increases. This is another way of saying that “1/x tends to 0 as x tends to infinity”. The limit of 1/x2 is calculated in a very similar way). So in order to get the expression into a format that we’re happy dealing with, it is favourable to divide it by x2/x2 so we’re not changing the value of the expression, but this leaves us with (4+(5/x2))/(1-(6/x2)). Notice now that we can compute the definite limit of each ‘part’ of the fraction: (4+(5/x2)) tends to 4 as x tends to infinity (as 5/x2 tends to 0), and (1-(6/x2)) tends to 1 as x tends to infinity (as -6/x2 tends to 0). So we’re left up with 4/1 = 4. So (4x2+5)/(x2-6) tends to 4 as x tends to infinity.
Note that if you divide by the highest power of x in the expression (over itself) , it will whittle down into something that you’re probably more able to deal with

Related Further Mathematics GCSE answers

All answers ▸

Factorise the following quadratic x^2 - 8 + 16


Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A


Consider the Matrix M (below). Find the determiannt of the matrix M by using; (a) cofactor expansion along the first row, (b) cofactor expansion along the second column


Solving equations with unknown in both sides


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences