How do I solve an integration by substitution problem?

I think it’s best I work through an example with you as these problems can vary quite a lot, but the general methods used are the same.
Example: Use the substitution u=x2+5 to find: The integral of (x3/sqrt(x2+5)).dx between the limits of 2 and 1.
So the whole idea of using a substitution here is to simplify the integration for us. The first thing we must do is substitute the given substitution in, otherwise there wouldn’t be much point! In doing this, we also need to replace the .dx in the integration, we do this by finding du/dx and then rearranging for dx; in this particular example, du/dx = 2x, so dx = (1/2x)du, so the integral becomes (x3/sqrt(x2+5)). (1/2x).du =( x2/2sqrt(x2+5)).du. We then use the substitution to get the x’s in terms of u: the numerator, x2 becomes u-5 (as u=x2+5), the denominator, 2sqrt(x2+5) becomes 2sqrt(u). Finally, modifying the limits in terms of u: since the top limit is x=2, then this is equivalent to u=22+5=9, and the bottom limit becomes 12+5=6.
We now have our rephrased integration problem: Integrate ((u-5)/2sqrt(u)).du between the limits of 9 and 6. Notice we can split up the integrand (the thing we’re integrating): =(u/2sqrt(u))-(5/2sqrt(u)). You know that this is equivalent to 0.5u1/2-5.5u-1/2, which when integrated is (1/3)u3/2-5u1/2. The only thing left to do now is apply the limits: [(1/3)(93/2)-5(91/2)]-[ [(1/3)(63/2)-5(61/2)] = 9-15-2sqrt(6)+5sqrt(6) = 7sqrt(6)-6
The steps to solving other substitution problems are very similar to the ones detailed above, obviously the manipulations will be different, but the ideas are the same.

Answered by Andrew D. Maths tutor

5702 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined with the following parameters; x = 3 - 4t , y = 1 + 2/t . Find dy/dx in terms of x and y.


At time t = 0, a particle is projected vertically upwards with speed u m s–1 from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s–1. Find the value of u and T and evaluate the model. (AS mechanics)


Find the solutions of the equation: sin(x - 15degrees) = 0.5 between 0<= x <= 180


Express the following in partial fractions: (x^2+4x+10)/(x+3)(x+4)(x+5)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences