What is the range of solutions for the inequality 2(3x+1) > 3-4x?

When it comes to answering questions about inequalities, it is important to remember the signs and what they represent. In this instance, we need to find a range of solutions where 2(3x+1) is greater than 3-4x. 

To solve this inequality, we need to make x the subject of the inequality. First, we need to expand 2(3x+1) to get 6x+2. Now we have the inequality 6x+2>3-4x. Next we rearrange to make x the subject. By adding 4x to both sides and subtracting 2 from both sides, we get the inequality 10x>1. Finally, we divide both sides by 10 to get x by itself. The simplified inequality is x>1/10. Therefore the answer to the question is the range of solutions for the inequality 2(3x+1)>3-4x is x is greater than 1/10. 

Answered by Lara B. Maths tutor

3785 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following set of simultaneous equations: 3x + y = 11, 2x + y = 8


Show the curve y = 4x^2 + 5x + 3 and the line y = x + 2 have exactly one point of intersection


Differentiate dy/dx ((2x^3)+(x^2)-(4x)+7)


Solve 3x^2 - 4x - 6 = 0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences