What is the range of solutions for the inequality 2(3x+1) > 3-4x?

When it comes to answering questions about inequalities, it is important to remember the signs and what they represent. In this instance, we need to find a range of solutions where 2(3x+1) is greater than 3-4x. 

To solve this inequality, we need to make x the subject of the inequality. First, we need to expand 2(3x+1) to get 6x+2. Now we have the inequality 6x+2>3-4x. Next we rearrange to make x the subject. By adding 4x to both sides and subtracting 2 from both sides, we get the inequality 10x>1. Finally, we divide both sides by 10 to get x by itself. The simplified inequality is x>1/10. Therefore the answer to the question is the range of solutions for the inequality 2(3x+1)>3-4x is x is greater than 1/10. 

LB
Answered by Lara B. Maths tutor

4086 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Out of a sample of 80 batteries, 3 are faulty. What percentage of the batteries are faulty?


Factorise fully 2x^2 -x -4=2 and thus solve for x


I find the percentage questions really hard, how do I answer the questions that will come up in exams?


Simplify 3x^(2)+13x-30/x^(2)-32


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning