Find the gradient of the line 4x+9y=10.

There are two approaches to this problem.

Firstly, you could rearrange the equation so that you have the general equation of a line, y=mx+c, where m is the gradient that you are looking for! When we rearrange the equation, we get y=-4/9x+10/9 so the gradient is -4/9.

Also, we can use implicit differentiation to get the solution. We do this by differentiating both sides of the equation with respect to x. This gives us 4+9dy/dx=0. This can be rearranged to give dy/dx=-4/9. As we know the first derivative is the gradient - we can say the gradient of the line is -4/9.

DS
Answered by Dan S. Maths tutor

4663 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is described by the equation (x^2)+4xy+(y^2)+27=0. The tangent to the point P, which lies on the curve, is parallel to the x-axis. Given the x-co-ordinate of P is negative, find the co-ordinates of P.


Integral of sin^2(x) with respect to x


How would you solve the inequality x^2-2x-8 >= 0?


What is the indefinite integral of (x^4)*(-sin(x)) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning