Given that 4(cosec x)^2 - (cot x)^2 = k, express sec x in terms of k.

This question makes good use of the trigonometric identities tan2x + 1 = sec2x and 1 + cot2x = cosec2x which can be easily recited in the exam by using the identity sin2x + cos2x = 1 and then dividing by cos2x or sin2x respectively!

Remember, the trick when it comes to solving problems such as these is just perseverance and using trial and error. Practice makes perfect!

There are many ways of solving this problem, here is one method:

4cosec2x - cot2x = k
4(1 + cot2x) - cot2x = k
4 + 3cot2x = k
3cot2x = k - 4
tan2x = 3 / (k - 4)
sec2x - 1 = 3 / (k - 4)
sec x = ( (3 / (k-4)) + 1 )1/2

Answered by Dan S. Maths tutor

11636 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate ln(x)?


The circle C has centre (3, 1) and passes through the point P(8, 3). (a) Find an equation for C. (b) Find an equation for the tangent to C at P, giving your answer in the form ax + by + c = 0 , where a, b and c are integers.


Given that y = 4x^3 – 5/(x^2) , x =/= 0, find in its simplest form dy/dx.


Find the tangent to y = x^2 - 4x + 9 at the point (3,15)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences