Given that f(x)=2sinhx+3coshx, solve the equation f(x)=5 giving your answers exactly.

Firstly set 2sinhx+3coshx=5Now using the exponential definitions of sinhx and coshx rewrite the equation to give:2(1/2(e^x-e^-x))+3(1/2(e^x+e^-x))=5Simplify the equation by expanding out the brackets, multipling by 2 to eliminate fractions and collecting like terms together, as so:e^x-e^-x+3/2e^x+3/2e^-x=52e^x-2e^-x+3e^x+3e^-x=105e^x+e^-x=105e^x+e^-x-10=0e^-x is equivalent to 1/e^x therefore multiply through by e^x to get a quadratic equation in e^x5e^2x-10e^x+1=0Now using the quadratic equation (where a=5, b=-10 and c=1) solve for e^xI will indicate 'plus or minus' by +/- (not to be confused with plus, divide, minus)e^x=(-(-10)+/-√(-10)^2-4(5)(1))/2(5)e^x=(10+/-√80)/10e^x=1+/-(2√5)/5To solve for x you must take the natural logarithm of both sides as (ln^e=1) sox=ln(1+(2√5)/5orx=ln(1-(2√5)/5)

ES
Answered by Emily-Louisa S. Further Mathematics tutor

7671 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


By Differentiating from first principles, find the gradient of the curve f(x) = x^2 at the point where x = 2


The set of midpoints of the parallel chords of an ellipse with gradient, constant 'm', lie on a straight line: find its equation; equation of ellipse: x^2 + 4y^2 = 4


Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning