Differentiate y= (2x+1)^3. [The chain rule]

For maths questions I feel that getting your head around the concepts are difficult but once achieved allow you to comfortably answer a wide range of questions. Therefore for maths tuition I think it is important to find a method that works for the student and then practice using it through multiple questions.  

Obviously it is easier to discuss concepts face-to-face however for this example I've found a four step process helps me answer questions on the chain rule. 

1) Differentiate the thing in the brackets

 y = 2x+1    -->      dy/dx = 2

2) Multiply that by the induction outside the bracket

2 X 3 = 6

3) Stick this number before the initial bracket

6(2x+1)^3

4) Minus 1 off the initial indicy

6(2x+1)^2 

So dy/dx = 6(2x+1)^2

This is just one method. There is another one substituting U into the equation and then saying [du/dx X dy/du = dy/dx]. I would go through both methods with the students so they can use the one that works for them. 

JJ
Answered by James J. Maths tutor

17633 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line L1 has vector equation,  L1 = (  6, 1 ,-1  ) + λ ( 2, 1, 0). The line L2 passes through the points (2, 3, −1) and (4, −1, 1). i) find vector equation of L2 ii)show L2 and L1 are perpendicular.


let p be a polynomial p(x) = x^3+b*x^2+ c*x+24, where b and c are integers. Find a relation between b and c knowing that (x+2) divides p(x).


Please Simplify: (2x^2+3x/(2x+3)(x-2))-(6/x^2-x-2))


Find the derivation of (sinx)(e^2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences