The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi

Tangent is parallel, therefore (dy/dx)=0.

Find y:

y = r sin(x) = 3a(1 + cos(x))(sin(x))

Differentiate y with respect to x

dy/dx = 3a[(2cos(x) - 1)(cos(x) + 1)] 

= 0

Solve equation

2cos(x)- 1 = 0

cos(x) = 1/2

x = pi/3

Therefore r = 3a(1 + cos(pi/3))

a = 9a/2

A: (9a/2, pi/3)

Related Further Mathematics A Level answers

All answers ▸

The point D has polar coordinates ( 6, 3π/4). Find the Cartesian coordinates of D.


How do I draw any graph my looking at its equation?


f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.


solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences