Find the inverse of the general 2x2 matrix A= ([a, b],[c, d]) when does this inverse exist?

This is a typical further maths question, doing it correctly is a matter of carrying out a two-step process. 

Start by finding the determinant of the matrix,

det(A)=ad-bc

Then swap the entries a d and negate the other entries. After dividing by the determinant the inverse of A is given.

A^-1=1/(ad-bc)([d -b],[-c, a]).

LR
Answered by Larry R. Further Mathematics tutor

3418 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to the differential equation: d^2y/dx^2 - 8 dy/dx +16y = 2x


Given y=arctan(3e^2x). Show dy/dx= 3/(5cosh(2x) + 4sinh(2x))


Prove by induction that n^3+5n is divisible by 3 for every natural number.


Prove that 1+4+9+...+n^2 = n(n+1)(2n+1)/6.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning