Find the derivative of f where f(x)=a^x.

This is a difficult question that you only need to know the result of.However, it's a good exercise to derive it. 

Starting with f(x)=ax we can take the natural logarithm of both sides (so we can use one of its properties).

This gives us ln(f(x))=ln(ax), from the natural logarithms properties we know this is equal to ln(f(x))=x*ln(a).

Now using the chain rule we can differentiate both sides,

d(ln(f(x)))/dx= f'(x)/f(x), d(x*ln(a))/dx=ln(a)

so we now have f'(x)/f(x)=ln(a). Recalling that f(x)=ax this gives us the answer,

f'(x)=axln(a).

LR
Answered by Larry R. Maths tutor

3937 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


How do you calculate the angle between two vectors?


How do I tell if a curve has a maximum or a minimum?


When solving a trigonometric equation, like sin(x) = -1/3 for 0 ≤ x < 2π, why do I get an answer outside the range? Why are there many correct answers for the value of x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences