Find the derivative of f where f(x)=a^x.

This is a difficult question that you only need to know the result of.However, it's a good exercise to derive it. 

Starting with f(x)=ax we can take the natural logarithm of both sides (so we can use one of its properties).

This gives us ln(f(x))=ln(ax), from the natural logarithms properties we know this is equal to ln(f(x))=x*ln(a).

Now using the chain rule we can differentiate both sides,

d(ln(f(x)))/dx= f'(x)/f(x), d(x*ln(a))/dx=ln(a)

so we now have f'(x)/f(x)=ln(a). Recalling that f(x)=ax this gives us the answer,

f'(x)=axln(a).

Answered by Larry R. Maths tutor

3600 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why can't you divide something by 0?


How do we know which formulas we need to learn for the exam?


How do you differentiate using the chain rule?


How do you find the integral of (2+5x)e^3x ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences