How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?

In order to differentiate this expression, you need to use the chain rule. 

The chain rule gives: f'(x) = uv' + u'v.

The u and the v are two parts of the original function f(x). The apostrophe ' at the end means the derivative of that.

We need to assign values to u and v, so we look at the function f(x) = 2x(3x - 1)2 to see what parts it is in:

u = 2x

v = (3x - 1)2

Then, we differentiate each of these.

u' = 2

v' = 2 x 3 x (3x - 1)1 = 6(3x - 1)

Now, we can put this expression altogether:

f'(x) = uv' + u'v = 2x(6(3x - 1)) + 2(3x - 1)2

And now, simplify.

f'(x) = 12x(3x - 1) + 2(3x - 1)2

f'(x) = 2(3x - 1)[6x + (3x - 1)]

f'(x) = 2(3x - 1)(9x - 1)

f'(x) = 2(27x2 - 9x - 3x + 1)

f'(x) = 2(27x2 - 12x + 1)

f'(x) = 54x2 - 24x + 2

Answered by Sam E. Maths tutor

13688 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle P is projected vertically upwards from a point 20m above the ground with velocity 18m/s, no external forces act on it other than gravity. What will its speed be right before it hits the ground? Give your answer to one decimal place.


Find the equation of the normal to the curve y = 2x^2 -3x +7 at the point x = 1.


How do you go about sketching a curve when all you are given is the equation?


Express 6cos(2x) + sin(x) in terms of sin(x), hence solve the equation 6cos(2x) + sin(x) = 0 for 0<x<360


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences