There are "n" sweets in a bag, six are orange and the rest are yellow. If you take a random sweet from the bag and eat it. Then take at random another one and eat it. The probability of eating two orange sweets is 1/3. Show that n²-n-90=0.

We have:

n= total of sweets

6= orange sweets

(6-n)=yellow sweets (We use 6-n beacuse we know that if 6 sweets are orange, the rest must be yellow, so yellow sweets= (total of sweets-orange sweets))

If the probability of geting two orange aweets is 1/3, then:

(6/n) x (5/(n-1))= 1/3

Here, 6 over n is the probability of getting an orange sweet, we use Laplace´s Law: (number of favourable cases)/(number of total cases), that would mean: number of orange sweets/ total number of sweets. So if we have already eaten an orange sweet, there are 5 orange sweets left and the total number of sweets is n-1, that is why the second fraction is 5/(n-1)

Then we get:

30/(n^2-n)= 1/3

We try to isolate the n (as it is an equation):

n^2 - n= 30x3

n^2 - n= 90

Therefore;

n^2 - n - 90=0

RL
Answered by Raquel L. Maths tutor

5489 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equations y = x + 1 and y = x^2 - 3x + 4 simultaneously.


Differentiate y=3x^2+2x+4 and find the stationary points, decide if it is a local maximum or minimum.


Kevser buys 5kg of sweets for £10. She separates the sweets so that there are 250g of sweets in each bag. She sells each bag for 65p. She sells all bags. What is her percentage profit?


x + y = 11, and x^2 + y^2 = 61, Work out values of y in the form of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning