How do I use the chain rule for differentiation?

The chain rule is used when we have a function in the form f(g(x)).

For example sin(x^3). [In this case, f(x) = sin(x) and g(x) = x^3]

The chain rule says that the derivative of f(g(x)) is g'(x)*f'(g(x)). 

For our example:

g'(x) = 3x^2 and f'(x) = cos(x). So the derivative will be 3x^2*cos(x^3).

Answered by Tom K. Maths tutor

4092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the integral of ((3x-2)/(6x^2-8x+3)) with respect to x between x=2 and x=1. (hint use substitution u=denominator)


June 2008 C1 Paper Differentiation Question


Why does 1/x integrate to lnx?


What is the smallest possible value of the integral ∫(x-a)^2 dx between 0 and 1 as a varies?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences