How do I use the chain rule for differentiation?

The chain rule is used when we have a function in the form f(g(x)).

For example sin(x^3). [In this case, f(x) = sin(x) and g(x) = x^3]

The chain rule says that the derivative of f(g(x)) is g'(x)*f'(g(x)). 

For our example:

g'(x) = 3x^2 and f'(x) = cos(x). So the derivative will be 3x^2*cos(x^3).

Answered by Tom K. Maths tutor

4413 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the definite integral of 2x^2 + 4x + 1 with a lower limit of 3 and a higher limit of 6?


differentiate 4x^3 + 3x


At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


Differentiate with respect to x. y(x) = e^(7x^2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences