How do I differentiate y=x^x?

y=x^x

To find the differential, dy/dx, logs of both sides must be taken:

log(y)=log(x^x)

Then using log rules, the power can be brought down, outside the log expression:

log(y) = x log(x)

This expressions can now be differentiated with respect to x, using the chain rule on the left and the product rule on the right, giving:

(1/y) * dy/dx = 1 + log(x)

Multiplying through by y gives:

dy/dx = y (1 + log(x)) 

Remember! From the start of the question y=x^x, so this can be rewritten to:

dy/dx = x^x + x^xlog(x)

 

PL
Answered by Pascal L. Maths tutor

13809 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I don't understand how functions work. How do I decide if something is a function?


Solve (3x+6)/4 - (2x-6)/5 = (x+7)/8.


Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


How do you rationalise the denominator?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences