How do I differentiate y=x^x?

y=x^x

To find the differential, dy/dx, logs of both sides must be taken:

log(y)=log(x^x)

Then using log rules, the power can be brought down, outside the log expression:

log(y) = x log(x)

This expressions can now be differentiated with respect to x, using the chain rule on the left and the product rule on the right, giving:

(1/y) * dy/dx = 1 + log(x)

Multiplying through by y gives:

dy/dx = y (1 + log(x)) 

Remember! From the start of the question y=x^x, so this can be rewritten to:

dy/dx = x^x + x^xlog(x)

 

Answered by Pascal L. Maths tutor

13639 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When Integrating by parts, how do you know which part to make "u" and "dv/dx"?


Differentiate x^3 + 6x + 1


Find the equation of the tangent line to the curve y = 2x^2 - 4x + 3 at the point (3,9)


i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences