Solve algebraically: 6a + b = 16 5a - 2b = 19

We have two algebraic equations and we are trying to find what a and b can equal to fit for both situations. 

1. 6a + b = 16

2. 5a - 2b = 19

The easiest method is substitution because we can sub in an equation for b by rearranging it. 

therefore: b= 16 - 6a 

From there on we can sub in b= 16 - 6a into equation 2. to give us: 

 5a - 2(16-6a) = 19

we expand the bracket to give: 

5a - 32 +12a =19 BE CAREFUL OF SIGNS

17a -32 =19

17a = 51 

therfore a = 3 

We can use a=3 to sub back into equation 1 

6(3) + b = 16

18 + b = 16 

b= - 2 

To check the two values for a and b are correct sub them back into equation 2. Follow the rule: SUB IN 1, CHECK IN 2: 

Therefore when a= 3 and b= -2 

5a - 2b = 19

5(3) -2(-2) = 19 BE CAREFUL OF SIGNS

15 + 4 = 19 which is correct. 

SW
Answered by Sophie W. Maths tutor

6663 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5 Work out the area of the triangle.


How to solve the following simultaneous equations? Equation 1: 3x+y=10 Equation 2: 2x-y=5


What is the equation of the straight line passing through the points (2,3) and (3,5)?


The number of uniform spherical balls that can be produced from a given mass of lead is inversely proportional to the radius of the ball cubed. If 2744 balls can be made when the radius is 1mm, how many balls can be made when the radius is 1.4mm ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences