x = 0.045 (45 recurring). Prove algebraically that x can be written as 1/22

x=0.045 (45 recurring)

10x = 0.45 (45 recurring)

100x = 4.54 (54 recurring)

1000x = 45.45 (45 recurring)

To get rid of the decimals:

1000x-10x = 45.45 - 0.45

990x = 45

x = 45/990

x = 9/198 (simplify by dividing by 5)

x = 1/22 (simplify by dividing 9)

JT
Answered by John T. Maths tutor

59045 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 5x - 2 > 3x + 11


A new car costs £12,000. It decreases in value by 5% each year for the first 5 years and then increases in value by 2% after that. How much does it cost after 7 years?


How to solve a quadratic by factorisation?


Solve 2x^2 = 162


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning