x = 0.045 (45 recurring). Prove algebraically that x can be written as 1/22

x=0.045 (45 recurring)

10x = 0.45 (45 recurring)

100x = 4.54 (54 recurring)

1000x = 45.45 (45 recurring)

To get rid of the decimals:

1000x-10x = 45.45 - 0.45

990x = 45

x = 45/990

x = 9/198 (simplify by dividing by 5)

x = 1/22 (simplify by dividing 9)

JT
Answered by John T. Maths tutor

58865 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 3x + y = –4 and 3x – 4y = 6


Draw the graph y = x2 + 3x + 2


What are the products when an acid reacts with a metal?


When solving two simultaneous equations, when should you use the method of elimination and when would you use the method of substitution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning