x = 0.045 (45 recurring). Prove algebraically that x can be written as 1/22

x=0.045 (45 recurring)

10x = 0.45 (45 recurring)

100x = 4.54 (54 recurring)

1000x = 45.45 (45 recurring)

To get rid of the decimals:

1000x-10x = 45.45 - 0.45

990x = 45

x = 45/990

x = 9/198 (simplify by dividing by 5)

x = 1/22 (simplify by dividing 9)

Answered by John T. Maths tutor

52291 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equation: x^2 + y^2 = 9 X+y=2


Simplify (x + 3)(2x + 5) - (x - 1)


How do I complete the square


Solve algebraically: 6a+b = 16 and 5a - 2b = 19


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences