x = 0.045 (45 recurring). Prove algebraically that x can be written as 1/22

x=0.045 (45 recurring)

10x = 0.45 (45 recurring)

100x = 4.54 (54 recurring)

1000x = 45.45 (45 recurring)

To get rid of the decimals:

1000x-10x = 45.45 - 0.45

990x = 45

x = 45/990

x = 9/198 (simplify by dividing by 5)

x = 1/22 (simplify by dividing 9)

Answered by John T. Maths tutor

56368 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The population of sheep on an island is 170. The population of the sheep is expected to increase by 3% each year, what will the population of sheep be in 5 years time? [3 marks]


Mark wants to borrow money to buy a car. His bank offers him a loan of £5,000 to be payed back over 3 years at 4% compound interest. a) Work out the interest acquired in the 2nd year. b) In total how much will Mark end up paying back the bank?


Factorise and solve 3x^2-x-10=0


Solve x^2=4(x-3)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences