How do I find the equation of a straight line?

Let's draw a line. It crosses the point (0,1), intercepting the y-axis (remember, y to the sky!) at 1 and the x-axis at the point (-2,0).

An equation tells us what a line looks like, it's a way of describing a line in a mathematical way. If we do it right, we can draw a line just by looking at the equation. Equations for straight lines are ususally given in the form y=mx+c - this tells us what y values do for different values of x. But what are m and c?

So, in order to find the equation for any straight line, we need two things: the gradient and the y-intercept. We call the y-intercept c and the gradient m. As soon as we know these two things, the rest is easy!

First step: finding the y-intercept - this is the simple bit, all you need to do is look at the y-axis and see where the line crosses it. In this case it is 1, so c=1.

Second step: finding the gradient - this requires a little bit more thought. All gradient means is the steepness of the line, so for every place the line moves to the right, how many places up does it go? In this case the line is not very steep at all and, in fact, you can see that for every place you move to the right it only goes up half a place up. Therefore m=0.5.

The tricky bit is over! Now comes the simple bit. All you have to do now is sub the values you've found for m and c back into the template equation, y=mx+c. So, if c=1 and m=0.5 then y=0.5x+1 - problem solved!

Answered by Dominique G. Maths tutor

5103 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Using the substitution method, solve the following simultaneous equations 2y+3x=14 and 6x-y=8


Lewis wins £360 in a prize draw. He gives 15% to charity and puts 3/8 into his savings. The rest he uses to buy a bike. How much of the money has Lewis got left for this bike? Note: do not use a calculator


Draw the following inequality on a graph: x^2+4x+1<-2


Paul travels from Rye to Eston at an average speed of 90 km/h. He travels for T hours. Mary makes the same journey at an average speed of 70 km/h. She travels for 1 hour longer than Paul. Work out the value of T


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences