if x^2 + 9x + 20 = 0, what are the possible values of x?

So x2 + 9x + 20 = 0 My preffered way of solving this equation is to factorise the equation. (Though I understand that different students may find other ways easier) Factorisation is where the above equation is (x+a)(x+b) = 0 So if we times out (x+a)(x+b) we getx2 + ax + bx + ab = 0 therefore x2 + (a+b)x + ab = 0Therefore we can equate this to the original question, so x2 + 9x + 20 = x2 + (a+b)x + abso now we can see that 9 = a + b and 20 = abI would reccomend using trial and error (although I understand that different students may prefer other techniques).So by trying for multiple values of a and b, we can see that they must equal 5 and 4. Therefore x2 + 9x + 20 = (x+5)(x+4) = 0 We know that the only way of producing a 0 through multiplication is through multiplying one number by another. Therefore we know thatx+5= 0 or x+4=0 Through rearranging these equations we can conclude that x must equal -4 or -5. 

Answered by Tilly P. Maths tutor

7615 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

For all values of x, f(x) = (x + 1)^2 and g(x) = 2(x-1). Show that gf(x) = 2x(x + 2).


a) You area told that y is proportional to x2 and that when y = 75, x = 5. Find a formula for y in terms of x. y = x b) Find the value of y when x = 3. c) Find the value of x when y = 1200.


Express 280 as a product of its prime factors.


Three points have coordinates A(-8, 6), B(4, 2) and C(-1, 7). The line through C perpendicular to AB intersects AB at the point P. Find the equations of the line AB and CP.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences