Using Integration by Parts, find the indefinite integral of ln(x), and hence show that the integral of ln(x) between 2 and 4 is ln(a) - b where a and b are to be found

Using integration by parts, we can re-write the integral of ln(x) as (xln(x) - int(x(1/x))) = x*ln(x) - x

Therefore, evaluating between 2 and 4 gives us (4ln(4) - 4) - (2ln(2) - 2) = 2ln(16/2) - 4 + 2 = ln(64) - 2. So a = 64 and b = 2

Answered by Kyle R. Maths tutor

3366 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following... f(x)= 5x^4 +16x^2+ 4x + 5


Use implicit differentiation to find dy/dx of a curve with equation x^3 + yx^2 = y^2 + 1.


Why do I need to add the + C when finding an indefinite integral?


A curve has parametric equations x = 1- cos(t), y = sin(t)sin(2t). Find dy/dx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences