Using the addition formula for sin(x+y), find sin(3x) in terms of sin(x) and hence show that sin(10) is a root of the equation 8x^3 - 6x + 1

First we state the formula for sin(x+y)

sin(x+y) = sin(x)cos(y) + cos(x)sin(y)

Letting y = 2x

sin(x+2x) = sin(x)cos(2x) + cos(x)sin(2x)

Now sin(2x) = 2sin(x)cos(x) and cos(2x) = 1 - 2sin^2(x), substitute these into the formula gives us

sin(3x) = sin(x)(1-2sin^2(x)) + cos(x)(2sin(x)cos(x))

sin(3x) = sin(x) - 2sin^3(x) + 2sin(x)cos^2(x)

Now cos^2(x) = 1 - sin^2(x)

sin(3x) = sin(x) - 2sin^3(x) + 2sin(x)(1-sin^2(x))

sin(3x) = sin(x) - 2sin^3(x) + 2sin(x) - 2sin^3(x)

sin(3x) = 3sin(x) - 4sin^3(x)

Now letting x = 10, we get

sin(30) = 3sin(10) - 4sin^3(10)

Rearranging and evaluation sin(30) = 1/2

8sin^3(10) - 6sin(10) + 1 = 0

Hence sin(10) is a root of the cubic equation

KR
Answered by Kyle R. Maths tutor

22162 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the acute angle between the two lines... l1: r = (4, 28, 4) + λ(-1, -5, 1), l2: r = (5, 3, 1) + μ(3, 0, -4)


Can you differentiate y = (x^4 + x)^10


How do I find the distance between two point in the plane?


A triangle has sides A, B and C. The side BC has length 20cm, the angle ABC is 50 deg and angle BAC is 68 deg. a) Show that the length of AC is 16.5cm, correct to three significant figures. b) The midpoint of BC is M, hence find the length of AM


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning