How do I integrate cos^2(x)?

The key to solving any integral of this form is to use the cosine rule:

cos(2x) = cos2(x) - sin2(x) = 2cos2(x) - 1 = 1 - 2sin2(x)

All of these forms are really helpful when solving problems such as this, and it's great if you can remmeber them, though if you get stuck in an exam, they can all be derived from the addition formulae that are probably on your fomula sheet!

So, using the above idenities, we know that:

2cos2(x) - 1 = cos(2x)

2cos2(x) = cos(2x) + 1

cos2(x) = (cos(2x) + 1)/2

So instead, we perform the integral of (cos(2x) + 1)/2, which we already know how to do.

=> (sin(2x))/4 + x/2

DF
Answered by Daniel F. Maths tutor

37293 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can the trapezium rule be used to estimate a definite integral?


Find minimum and maximum of x^2+1 if they exist


Express as a single logarithm 2 loga 6 loga 3 [2 marks]


The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences