How do I integrate log(x) or ln(x)?

The integral of log(x) is not necessarily straight-forward. Though we can use the fact that d/dx(log(x)) = 1/x to help us.

Rather than simply trying to integrate log(x), we can use integration by parts on 1 x log(x) (as in 'one times' log(x)).

So we can differentiate the log(x) part and integrate the 1 part to give:

xlog(x) - ∫ 1 dx = xlog(x) - x

Note: if the middle step isn't clear, we can write it more explicitly as

u = log(x)  v' = 1

u' = 1/x     v = x

Where the rule for integration by parts is written as:

uv' = uv - ∫ u'v    ,  where u and v are functions of x

DF
Answered by Daniel F. Maths tutor

15700 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=sin2x(3x-1)^4, find dy/dx


The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.


Find all the stationary points of the curve: y = (2/3)x^3 – (1/2)x^2 – 3x + 7/6 and determine their classifications.


A circle with centre C has equation x^2 + y^2 +8x -12y = 12


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning