Prove that the d(tan(x))/dx is equal to sec^2(x).

You can express tan(x) as sin(x)/cos(x). Therefore, tan(x)= sin(x)/ cos(x)The quotient rule can be applied here as there is a function of x in the numerator and denominator.Quotient Rule: (v*(du/dx) - u*(dv/dx))/v2Let u =sin(x) and v=cos(x) and hence (du/dx)= cos(x) and (dv/dx)= -sin(x).Therefore:d(tan(x))/dx= (cos(x)cos(x))-(sin(x)(-sin(x))/(cos2(x))=(cos2(x)+sin2(x))/(cos2(x))Using the trig identity, cos2(x)+sin2(x)=1, the numerator of the fraction can be tidied and heavily simplified.d(tan(x))/dx= 1/(cos2(x))As 1/(cos(x)) is equal to sec(x), 1/(cos2(x)) is equal to sec2(x).

CU
Answered by Chinazam U. Maths tutor

17949 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Rewrite ... logF=logG+logH−log(1/M)−2*logR ... in the form F=... using laws of logarithms


Show that 2tan(th) / (1+tan^2(th)) = sin(2th), where th = theta


Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


You're on a game show and have a choice of three boxes, in one box is £10, 000 in the other two are nothing. You pick one box, the host then opens one of the other boxes showing it's empty, should you stick or switch?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences