Prove that the d(tan(x))/dx is equal to sec^2(x).

You can express tan(x) as sin(x)/cos(x). Therefore, tan(x)= sin(x)/ cos(x)The quotient rule can be applied here as there is a function of x in the numerator and denominator.Quotient Rule: (v*(du/dx) - u*(dv/dx))/v2Let u =sin(x) and v=cos(x) and hence (du/dx)= cos(x) and (dv/dx)= -sin(x).Therefore:d(tan(x))/dx= (cos(x)cos(x))-(sin(x)(-sin(x))/(cos2(x))=(cos2(x)+sin2(x))/(cos2(x))Using the trig identity, cos2(x)+sin2(x)=1, the numerator of the fraction can be tidied and heavily simplified.d(tan(x))/dx= 1/(cos2(x))As 1/(cos(x)) is equal to sec(x), 1/(cos2(x)) is equal to sec2(x).

Answered by Chinazam U. Maths tutor

16985 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is there more than one solution to x^2 = 4?


Differentiation: How to use the chain rule


Find the general solution of the equation tan(2x + pi/2) = SQRT(3), giving your answer for x in terms of π in a simplified form.


The region R is bounded by the curve y=sqrt(x)+5/sqrt(x) the x-axis and the lines x = 3, x = 4. Find the volume generated when R is rotated through four right-angles about the x-axis. Give your answer correct to the nearest integer.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences