If one proton is travelling through space at 0.3c, what is it's kinetic energy in MeV?

We know the formula for kinetic energy is

KE = (1/2)mv2.

If we know that c, the speed of light, is 3x108ms-1 (you will be given this value in your Data & Formula books in the exam) and the proton is traveling at 0.3c, it has a velocity of

0.3x3x108 = 9x107ms-1.

Therefore v2 will be (9x107)2 = 8.1x1015.

We know that the mass of a proton is 1.67x10-27kg (again, you will be given this value in the exam).

Therefore kinetic energy in Joules (the SI unit, because we have currently only used SI units) is (1/2) x 1.67x10-27 x 8.1x1015 = 6.76x10-12J

It is known that 1eV (electron volt) is equal to 1.6x10-19J. Therefore dividing our energy in Joules by this value will give us our energy in eV.

(6.76x10-12) / (1.6x10-19) = 4.23x107eV.

As 1 MeV = 1x106eV, we can find our value in MeV by dividing it by 1x106;

(4.23x107) / (1x106) = 42.3MeV.

This is a standard unit used in particle energies, and is quite a common question in any A Level physics exam.

Answered by Oisin B. Physics tutor

5251 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Ignoring air resistance, use an energy argument to find the speed of a ball when it hits the ground if it is dropped from 50m, where m is the mass of the ball.


How do control rods work in a nuclear fission reactor?


Explain what is meant by the term "plastic deformation".


A bungee jumper of mass 160kg falls from a cliff. The bungee cord has a natural length of 5.0m and a stiffness constant of 3.0N/m. The air resistance is a constant force of 4.0N, what's the speed of the jumper when the total length of cord is 5.9m?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences