Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.

We don't know what type of a triangle we're considering here. Therefore the universal and quickest solution to the first problem is use of the cosine rule, which states that for a triangle with sides a,b and c and the angle θ between sides “a” and “b”:c2=a2+b2-2abcos(θ) To find the area of the triangle we should use the formula: A=1/2absin(θ)

Related Further Mathematics GCSE answers

All answers ▸

This is a question from a past paper: https://prnt.sc/r6jnxc


l1 and l2 are tangents of a circle. l1 intersects the circle at (3-√3,5) with a gradient of √3, and l2 intersects the circle at (3+√2,4+√2) with a gradient of -1. Find the centre of the circle, and hence find the radius of the circle.


The curve C has equation f(x) = 4(x^1.5) + 48/(x^0.5) - 8^0.5 for x > 0. (a) Find the exact coordinates of the stationary point of C. (b) Determine whether the stationary point is a maximum or minimum.


A circle has equation x^{2}-8x+y^{2}-6y=d. A line is tangent to this circle and passes through points A and B, (0,17) and (17,0) respectively. Find the radius of the circle.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences