A space probe of mass 1000kg, moving at 200m/s, explosively ejects a capsule of mass 300kg. The speed of the probe after the explosion is 250m/s. What is the velocity of the capsule?

To solve this problem, we must apply conservation of momentum. Even though there is kinetic energy being added to the probe-capsule system by the explosion, momentum will always be conserved if there are no external forces. These external forces could be, for example, air resistance or friction, but since we are in space we do not need to consider this.

We first calculate the momentum of the probe-capsule system before the explosion:

pi = 1000kg * 200 m/s = 200,000kgm/s

After ejecting the 300 kg capsule, the probe only weighs 700 kg. The total momentum is therefore:

pf = pprobe + pcapsule = 700kg * 250 m/s + 300 kg * vcapsule

Conservation of momentum requires

pf = pi

and inserting the above results yields:

700kg * 250 m/s + 300kg * vcapsule = 200,000kgm/s

vcapsule = (200,000 – 700*250)/300 m/s = 83.33 m/s

Since we have chosen velocities to be positive along the direction of motion of the probe, this means the probe and capsule must still be moving in the same direction.

Answered by Alexander S. Physics tutor

6579 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

In still air an aircraft flies at 200 m/s . The aircraft is heading due north in still air when it flies into a steady wind of 50 m/s blowing from the west. Calculate the magnitude and direction of the resultant velocity?


What is resonance


Describe the photoelectric effect and what it tells us about the properties of light .


Uranium -238 has a half life of 4.5 billion years. How long will it take a 2g sample of U-238 to contain just 0.4g of U-238?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences