Solve x^2 + x -12= 0 for all values of x.

This is a quadratic equation so there are two main methods you can use to solve it- factorising and completing the square.

My preferred method and the one I will demonstrate is factorisation.

The above equation will take the form:

(x + a)(x +b) = 0

Therefore if we multiply out the brackets we get:

x^2 + (a+b)x +ab = 0

This means that

(a+b) = 1 (the coefficient of x)

and 

ab = 12

From trial and error we find the values for a and b which are 

a= -3

b= 4

So x^2 + x -12= 0 can be written as (x-3)(x+4)= 0

When we multiply by 0 we get 0 therefore

x-3 = 0 or 

x+4= 0

From rearranging the above equations we find the answer is x = 3 or x = -4

SF
Answered by Sam F. Maths tutor

12415 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I expand single brackets?


A bottle contains 300ml of medicine, the dose for a child can be given by (m*a)/150 where m is the child's age in months and a is the adult dosage of 40ml. If you need 2 doses a day, how long will the medicine last until it's empty for a 2y/o child?


Using factorization, solve x^2 + 10x + 24 = 0


A light bulb is to be put in the middle of a room defined by the coordinates (10,5), (10,25), (20, 5) and (20,25). At what coordinate should the light bulb be placed?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning