Solve the simultaneous equations 2x+2y=14 and 3x-y=1

To solve these eliminations, we must eliminate either the x's or the y's. Either is possible but let us start with the y's. There is 2y in the first equation and (-1)y in the second, so we will have to multiply the second equation by 2 to ensure we have 2 and -2 lots of y in both equations. This means the second equation becomes 6x-2y=2. We can now add the two equations together to give us 8x=16. Dividing this by 8 gives us x=2. To find y, we pick either of the original equations (let's pick the first one) and substitute x=2 into to give us 4+2y=14. Subtracting 4 from both sides gives us 2y=10 and dividing by 2 finally gives us the solution y=5 (and x=2).

AS
Answered by Angus S. Maths tutor

6740 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

how am I meant to solve sq.root(6^2+8^2) = cube.root(125a^3) when one side is squared and the other is cubed?


Solve the equation: x^2 +8x + 12 = 0


Let f ( x ) = 15 /x and g ( x ) = 2 x − 5 Find fg(4), gf(-30) and give the expression for gf(x)


What is algebra?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences