How do I differentiate y=(4+9x)^5 with respect to x?

The method we use to differentiate this form of equation is called the chain rule.

The chain rule is dy/dx = dy/du x du/dx

We can rememeber the right way up of the terms on the right hand side by treating them as fracions and cancelling to give dy/dx.

To use the chain rule we need to define our u. In this form of question we choose what is inside the brackets.

Let u=4+9x, this means that y=u^5.

Then by normal rules of differentiation we differentiate y and u giving:

dy/du = 5u^4   and    du/dx = 9

Then we substitue these results into the chain rule formula giving:

dy/dx = 9 x 5u^4 = 45u^4

Then we substitute u=4+9x back in to get our final answer:

dy/dx = 45(4+9x)^4

Answered by Jenny H. Maths tutor

4448 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find all solutions to the trig equation 2sin(x)^2 + 3sin(x) - 2 = 0 in the range 0 <= x <= 360 degrees


integrate 1+ln(x) with respect to x


Rationalise the denominator of 25/sqrt(5)


Prove that the squared root of 2 is an irrational number


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences