What are the coordinates of the two turning points of the curve y = x^3+3x^2+3?

To find the turning points we need to find dy/dx and set it equal to zero. From there we can find the x coordinate and substitute it back into the origional equation to find the y coordinate.

First we differentiate y = x^3+3x^2+3

We have dy/dx = 3x^(3-1)+23*x^(2-1)+0 = 3x^2+6x

Now we set dy/dx = 3x^2+6x = 0

Both terms have a common factor of 3x so we can take this outside the brackets so the equation looks like dy/dx = 3x(x+2) = 0

From this we can see the equation equals 0 when x takes the values x = 0 and x = -2

We now substitute these values of x back into the origional equation y = x^3+3x^2+3

For x = 0, y = (0)^3+3(0)^2+3 = 3

For x = -2, y = (-2)^3+3(-2)^2+3 = -8+12 +3 = 7

So the coordinates of the two turning points are (-2,7) and (0,3)

LD
Answered by Lauren D. Maths tutor

9078 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

a)Rearrange the folowing to make m the subject; 4(m-2) = t(5m+3)


Many students do not understand the rules for when one can 'cancel' in regards to fractions


Let f(x)= x/5 + 1 . Find f^-1(x)


There are 10 boys and 20 girls in a class. In a class test, the mean score of the boys is 77. The mean score of the girls is 80. What is the mean score of the whole class?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning