Find the nth term of the sequence 7,11,15,19...

The nth term is a formula that allows us to find the value of a term in a sequence given its position in the sequence, whether this is the second term (n=2) or the millionth (n=1000000). In the above sequence, there is a difference of four between each term: 11-7=4, 15-11=4, etc. This means that the nth term is going to look something like 4n+6, or 4n-3, but we need to be sure of the number we are adding or subtracting at the end. The first term (n=1) is seven. So we know that 4(1) + something = 74(1)=4x1=44+something=7and subtracting 4 from both sides gives us 3. So the nth term is 4n+3. To check our answer, we can check another term. The fourth term (n=4) is 19, so putting n=4 in our formula should give 19.fourth term = 4(4)+3=16+3=19, which is what we wanted, so we can be sure that the nth term is indeed 4n+3.

Answered by Joe B. Maths tutor

53007 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Functions question: f(x) = 3x + 2a; g(x) = ax + 6; fg(x) = 12x + b. a and b are constants; Work out the value of b


For the function given by f(x) = x² - 5x - 6, solve for f(x)=0 by factorising.


Solve 5(x + 3) < 60


Which of these fractions is the largest - 33/56 ,4/7, 9/21, 6/14


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences