Find the possible values of x when x^2+8x+15=0

In order to find the value of x we can first factorise the equation. To factorise a quadratic we put it in the form:(x+a)(x+b)=0When multiplying out this general term we get:x^2 + bx + ax + ab = 0This can be simplified to :x^2 + (a+b)x + ab = 0 Therefore we know that we need to find two integers that add to 8 and multiply to 15 First we find the integers that can multiply to 15: 1x15=153x5=15We can see that out of these two possibilities of integer pairs to be used in the factorisation, 3 and 5 add to give 8. Therefore : a + b = 8          ab=15a=3 b=5(x+3)(x+5)=0Therefore x+3=0 or x+5=0This rearranges to give x=-3 or x=-5

Answered by Clare B. Maths tutor

3482 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Differentiate f(x) = 3x^2+5x+3


Ben wants to book tickets to see a concert. The price of the ticket is £65. He must also pay a booking fee, which is 15% of the ticket price. Ben has £75, does he have enough money to pay for the ticket and booking fee?


How do you solve a simultaneous equation by 'substitution'?


​What's the difference between the mean, median and mode? Why are there so many different types of average?!


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences