Differentiate the function y=(6x-1)^7

Problems of this style are solved using the chain rule.

To begin, define the quantity inside the brackets as u

u = 6x-1 such that y = u^7

It is now useful to write the chain rule. We can see

dy/dx = du/dx x dy/du

as the du 'cancel'. Now, all we need to do is differentiate two simple expressions:

du/dx = 6 and dy/du = 7u^6

Substituting these expressions back into the chain rule:

dy/dx = 42u^6

Finally, substitute into this expression to give the final answer, 

dy/dx = 42(6x-1)^6

Answered by Jamie L. Maths tutor

4205 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why/How does differentiation work?


Solving 2tan(x) - 3sin(x) = 0 for -pi ≤ x < pi


Can you explain what a logarithm is?


Let f(x) = 2x^3 + x^2 - 5x + c. Given that f(1) = 0 find the values of c.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences