Differentiate the function y=(6x-1)^7

Problems of this style are solved using the chain rule.

To begin, define the quantity inside the brackets as u

u = 6x-1 such that y = u^7

It is now useful to write the chain rule. We can see

dy/dx = du/dx x dy/du

as the du 'cancel'. Now, all we need to do is differentiate two simple expressions:

du/dx = 6 and dy/du = 7u^6

Substituting these expressions back into the chain rule:

dy/dx = 42u^6

Finally, substitute into this expression to give the final answer, 

dy/dx = 42(6x-1)^6

Answered by Jamie L. Maths tutor

4166 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve the equation 2cos x=3tan x, for 0°<x<360°


The lines y = 3x² - x + 5/2 intersects the line y = x/2 +7 at two points. Give their coordinates. Show your working


Integrate e^x sinx


How do you derive the quadratic formula?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences