Differentiate the function y=(6x-1)^7

Problems of this style are solved using the chain rule.

To begin, define the quantity inside the brackets as u

u = 6x-1 such that y = u^7

It is now useful to write the chain rule. We can see

dy/dx = du/dx x dy/du

as the du 'cancel'. Now, all we need to do is differentiate two simple expressions:

du/dx = 6 and dy/du = 7u^6

Substituting these expressions back into the chain rule:

dy/dx = 42u^6

Finally, substitute into this expression to give the final answer, 

dy/dx = 42(6x-1)^6

JL
Answered by Jamie L. Maths tutor

4696 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: y = xln[2x]


Using the trigonometric identity for tan(A + B), prove that tan(3x)=(3tan(x)-tan^3(x))/(1-3tan^2(x))


Find the turning points of the curve (x^3)/3 + x^2 -8x + 5


Find the gradient of the equation y=e^2x.ln(4x^2) when x=5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning