Differentiate the function y=(6x-1)^7

Problems of this style are solved using the chain rule.

To begin, define the quantity inside the brackets as u

u = 6x-1 such that y = u^7

It is now useful to write the chain rule. We can see

dy/dx = du/dx x dy/du

as the du 'cancel'. Now, all we need to do is differentiate two simple expressions:

du/dx = 6 and dy/du = 7u^6

Substituting these expressions back into the chain rule:

dy/dx = 42u^6

Finally, substitute into this expression to give the final answer, 

dy/dx = 42(6x-1)^6

JL
Answered by Jamie L. Maths tutor

4729 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate x^2(2x - 1)


Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


How do you find the turning point of a parabola using its equation? using its equation?


If a ball is dropped from 6m above the ground, how long does it take to hit the floor and what is its speed at impact (assuming air resistance is negligible)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning